List of Equations

Eq. 4.1	Calculation of lipid concentration in stock solutions	
Eq. 4.2	Calculation of total-P	107
Eq. 4.3	Perchloric acid digestion of phosphonates	109
Eq. 4.4	Calculation of phosphonate-P	110
Eq. 4.5	Calculation of total nitrogen (micro-Kjeldahl)	110
Eq. 4.6	Calculation of total nitrogen (Sloane-Stanley micro-procedure)	111
Eq. 4.7	Calculation of lipid amino nitrogen	
Eq. 4.8	Reaction for ester determination	
Eq. 4.9	Calculation of µmoles ester groups	113
Eq. 4.10	Calculation of total sugar	114
Eq. 4.11	Calculation of iodine value	114
Eq. 4.12	Calculation of total cholesterol	
Eq. 4.13	Calculation of free cholesterol and cholestrol esters	116
Eq. 4.14	Oxidization of cholesterol	116
Eq. 4.15	Calculation of free cholesterol in micro-procedure	117
Eq. 4.16	Conversion of acyl esters and fatty acids to fatty acid methyl esters	118
Eq. 4.17	Calculation of % fatty acid methyl esters	
Eq. 4.18	Calculation of % free fatty acids	
Eq. 4.19	Calculation of % fatty acids and non-sponifiables	
Eq. 4.20	Titration of acidic lipids	
Eq. 4.21	Calculation of fatty acid / acidic lipid and neutralization equivalents	
Eq. 4.22	Reaction of long-chain aldehydes with p-nitrophenyl hydrazine	
Eq. 4.23	Calculation of μ moles aldehyde	
Eq. 4.24	Reaction of vinyl ether with iodine	
Eq. 4.25	Calculation of µmoles vinyl ether	
Eq. 4.26	Calculation of vitamin A	
Eq. 4.27	Strong acid hydrolysis of N-acyl containing lipids (sphingolipids)	
Eq. 4.28	Choline reineckate formation	
Eq. 4.29	Calculation of mg choline	127
Eq. 4.30	Choline periodide formation	
Eq. 4.31	Calculation of µgrams choline	
Eq. 4.32	Calculation of µgrams choline in modified periodide micro-procedure	
Eq. 4.33	Reaction of <i>α</i> -amino alcohol with periodate	
Eq. 4.34	Calculation of μmoles α-Amino alcohol	
Eq. 4.35	Ethanolamine and serine reaction with dinitrofluorobenzine	
Eq. 4.36	Calculation of µmoles ethanolamine	
Eq. 4.37	Calculation of µmoles serine	
Eq. 4.38	Calculation of µmoles amino compound by amino acid analyser	
Eq. 4.39	Strong hydrolysis of glycerophospholipids for assessment of glycerol	
Eq. 4.40	Calculation of μ moles glycerol	
Eq. 4.41	Glycosyl diacylglycerol and acylglycerol hydrolysis for assessment of glycerol	
Eq. 4.42	Alternative assay for glycerol	
Eq. 4.43	Glycerophosphate release by alkaline hydrolysis of phospholipids and glycolipids	
Eq. 4.44	Phosphate release from glycerophosphates by acid hydrolysis and periodate reaction	
Eq. 4.45	Calculation of $(\alpha + \beta)$ glycerophosphate-P	
Eq. 4.46	Calculation of α-glycerophosphate-P	
Eq. 4.47	Calculation of β -glycerophosphate-P	139
Eq. 4.48		
-110	,	0

List of Equations

Eq. 4.49	Calculation of the sn-3-glycerophosphate	140
Eq. 4.50	Release of diols by methanolysis of lipid diol analogues	141
Eq. 4.51	Releae of sugars in glycolipids by acid methanolysis	143
Eq. 4.52	Action of periodate on lipids having terminal glycol groups	
Eq. 4.53	Calculation of µmoles terminal vicinal glycol	147
Eq. 4.54	Calculation of total vicinal glycol	
Eq. 4.55	Acetolysis of phosphodiester groups in mono-O-alkyl ether analogs	
Eq. 4.56	Calculation of % glycerol ethers and/or diol ethers following acetolysis	
Eq. 4.57	Phospholipase C hydrolysis of lipids containing alk-1-enyl or alkoxy groups	
Eq. 4.58	Release of alkyl and alk-1-enyl glycerols by reductive hydrogenolysis	
Eq. 4.59	Calculation of % glycerol ethers and / or diol ethers following acid hydrolysis	
Eq. 4.60	Acid hydrolysis of glycerol diether derivatives	
Eq. 4.61	Calculation of µgrams total sulfur	
Eq. 4.62	Hydrolysis of sulfate ester by mild acid-catalyzed solvolysis	155
Eq. 4.63	Calculation of µgrams ester S	
Eq. 4.64	Calculation of µmoles sulfatide	
Eq. 4.65	Definition of "chemical shift"	
-		
Eq. 5.1	Periodate-Schiff stain of vicinal-OH groups	
Eq. 5.2	Calculation of μ grams fatty acids and μ moles acyl lipids	
Eq. 5.3	Calculation of GLC CH ₂ separation factor for long-chain lipids	
Eq. 5.4	Calculation of GLC 2CH ₂ separation factor for long-chain lipids	
Eq. 5.5	Calculation of GLC xCH ₂ separation factor for long-chain lipids	
Eq. 5.6	Calculation of CH ₂ separation factor from relative retention time	
Eq. 5.7	Logarithmic form of Eq. 5.6	
Eq. 5.8	Calculation of carbon number and ECL	
Eq. 5.9	Calcuation of area of Gaussian distribution peaks on GLC	
Eq. 5.10	Calculation of area as proportional to peak height x width	
Eq. 5.11	Calculation of relative area of GLC component peak	
Eq. 5.12	Area as a function of retention time x peak height	
Eq. 5.13	Relative % area of GLC peak component as function of retention time	
Eq. 5.14	GLC peak area approximation by triangulation	244
Eq. 6.1	Reaction for synthesis of ³² P-rac-3-glycerophosphate	252
Eq. 6.2	Reaction for synthesis of [2-3H]- or [1,3-14C]- sn-3-glycerophosphate	
Eq. 6.3	Reaction for synthesis of [32P]-sn-3-glycerophosphate	
Eq. 6.4	Reaction for synthesis of [32P]-phosporylcholine	255
Eq. 6.5	Reaction for synthesis of sn-1,2-[U-14C]-diacylglycerol	257
Eq. 6.6	Reaction for synthesis of sn-3-[U-14C]-phosphatidic acid	258
Eq. 6.7	Reaction for synthesis of cytidine diphosphate-sn-1,2-[U-14C]-diacylglycerol	
Eq. 6.8	Correction for decay of ³² P and ³⁵ S	
Eq. 6.9	Calculation of counting efficiency	286
Eq. 6.10	Calculation of exposure time to X-ray film	288
Eq. 7.1	Periodate-permanganate oxidation of double bonds	304
Eq. 7.1 Eq. 7.2	Ozonolysis-pyrolysis reaction of double bonds	
Eq. 7.2 Eq. 7.3	Formation of <i>O</i> -isopropylidene diol from alkenes	
Eq. 7.3 Eq. 7.4	Reaction for synthesis of alcohol acetates	
Eq. 7.5	Reaction for synthesis of methoxy derivatives	
Eq. 7.5 Eq. 7.6	Reaction for synthesis of TMS-ether derivatives	
Eq. 7.7	Reaction for conversion of alcohols to fatty acid methyl esters	
- γ. / ./	Traction for the conversion of according to fatty acid methyl esters	010

Techniques of Lipidology

Eq. 7.8	Haloform reaction of methyl ketones	314
Eq. 7.9	Reaction for conversion of aldehydes to dimethyl acetals	315
Eq. 7.10	Reaction for conversion of aldehydes to alcohols and alcohol acetates	315
Eq. 7.11	Reaction for conversion of aldehydes to fatty acid methyl esters	316
Eq. 7.12	Reaction of fatty acids with diazomethane	317
Eq. 7.13	Calculation of % free fatty acids	318
Eq. 7.14	Calculation of weight of free fatty acids (mg)	318
Eq. 7.15	Oxidation products of branch-chain fatty acids	320
Eq. 7.16	Products of hydrogenation of cylcopropane fatty acids	321
Eq. 7.17	Products of periodate-KMnO ₄ oxidation of monoenoic fatty acids	323
Eq. 7.18	Products of reductive ozonolysis of monenoic fatty acids	324
Eq. 7.19	Products of oxidative ozonolysis of unsaturated fatty acids	325
Eq. 7.20	Synthesis of O-isopropylidene diol from unsaturated fatty acids	326
Eq. 7.21	Products of reaction of epoxy-fatty acids with dimethylamine	327
Eq. 7.22	Calculation of average fatty acid molecular weight	364
Eq. 7.23	Calculation of average number of double bonds per molecule	366
Ea. 7.24	Analysis of long-chain bases via derived aldehydes	385